Задание 14 из ЕГЭ по математике (профиль): задача 16
$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, является боковым ребром правильной шестиугольной призмы. Прямая, содержащая противоположное боковое ребро призмы, проходит через точку $D$. а) Докажите, что одно из оснований призмы лежит в плоскости $ABS$. б) Найдите площадь боковой поверхности указанной правильной шестиугольной призмы, если площадь боковой поверхности пирамиды $SABCD$ равна $16√ 3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CD$ взята точка $K$ так, что $CK = DK$.
а) Постройте сечение призмы плоскостью, проходящей через точки $A_1$ и $K$ параллельно …