Задание 14 из ЕГЭ по математике (профиль): задача 16
$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, является боковым ребром правильной шестиугольной призмы. Прямая, содержащая противоположное боковое ребро призмы, проходит через точку $D$. а) Докажите, что одно из оснований призмы лежит в плоскости $ABS$. б) Найдите площадь боковой поверхности указанной правильной шестиугольной призмы, если площадь боковой поверхности пирамиды $SABCD$ равна $16√ 3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная треугольная пирамида SABC.
а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.
б) Найдите площ…
Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.
а) Постройте сечение пирамиды плоск…
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…