Задание 14 из ЕГЭ по математике (профиль): задача 16

Разбор сложных заданий в тг-канале:

$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, является боковым ребром правильной шестиугольной призмы. Прямая, содержащая противоположное боковое ребро призмы, проходит через точку $D$. а) Докажите, что одно из оснований призмы лежит в плоскости $ABS$. б) Найдите площадь боковой поверхности указанной правильной шестиугольной призмы, если площадь боковой поверхности пирамиды $SABCD$ равна $16√ 3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 48, а высота $SO$ равна 18. Точка $F$ — середина бокового ребра $SC$, точка $E$ — середина ребра $CD$. Плоскость $ABF$ перес…

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…