Задание 14 из ЕГЭ по математике (профиль): задача 17

Разбор сложных заданий в тг-канале:

Боковое ребро правильной шестиугольной призмы проходит через вершину правильного октаэдра, а противоположное ему ребро призмы соединяет центры противоположных граней октаэдра. а) Докажите, что одна из вершин октаэдра совпадает с вершиной призмы. б) Найдите объём призмы, если объём октаэдра равен $16$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В основании пирамиды $DABC$ лежит правильный треугольник $ABC$ со стороной $5$. Ребро $CD$ перпендикулярно плоскости основания. Точки $K, L,$ и $M$ лежат на рёбрах $AD, BD$ и $AC$ соответственно. …

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…