Задание 14 из ЕГЭ по математике (профиль): задача 17
Боковое ребро правильной шестиугольной призмы проходит через вершину правильного октаэдра, а противоположное ему ребро призмы соединяет центры противоположных граней октаэдра. а) Докажите, что одна из вершин октаэдра совпадает с вершиной призмы. б) Найдите объём призмы, если объём октаэдра равен $16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
Основание $ABC$ правильной треугольной пирамиды $DABC$ вписано в основание конуса с вершиной $S$, а вершина $D$ пирамиды расположена на высоте $SO$ конуса. Объём конуса равен $36π$, объём пира…
В основании пирамиды $DABC$ лежит правильный треугольник $ABC$ со стороной $5$. Ребро $CD$ перпендикулярно плоскости основания. Точки $K, L,$ и $M$ лежат на рёбрах $AD, BD$ и $AC$ соответственно. …