Задание 14 из ЕГЭ по математике (профиль): задача 14

Разбор сложных заданий в тг-канале:

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что плоскость, проходящая через точку $C$ перпендикулярно прямой $BK$, делит отрезок $B_1K$ пополам. б) Найдите косинус угла между этой плоскостью и плоскостью $ABB_1$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…

В правильной треугольной пирамиде $DABC$ с основанием $ABC$ сторона основания равна $6√3$, а высота пирамиды равна $8$. На рёбрах $AB, AC$ и $AD$ соответственно отмечены точки $M, N$ и $K$, такие,…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…