Задание 14 из ЕГЭ по математике (профиль): задача 14
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что плоскость, проходящая через точку $C$ перпендикулярно прямой $BK$, делит отрезок $B_1K$ пополам. б) Найдите косинус угла между этой плоскостью и плоскостью $ABB_1$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В основании пирамиды $SABC$ лежит прямоугольный треугольник $ABC$ с гипотенузой $AB$. Проекцией точки $S$ на плоскость $ABC$ является точка $O$ — середина отрезка $AB$. а) Докажите, что $BS=CS$. б…
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…
В правильной треугольной пирамиде $DABC$ с основанием $ABC$ сторона основания равна $6√3$, а высота пирамиды равна $8$. На рёбрах $AB, AC$ и $AD$ соответственно отмечены точки $M, N$ и $K$, такие,…