Задание 14 из ЕГЭ по математике (профиль): задача 18
В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезка $AB$. б) Найдите угол между прямыми $AB$ и $NP$, если $MNPS$ — правильный тетраэдр.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания $AB = 4√2$, боковое ребро $AA_1 = 8$, $M$ середина ребра $A_1B_1$. На ребре $DD_1$ отмечена точка $L$ так, что $DL = 2$. Пл…