Задание 14 из ЕГЭ по математике (профиль): задача 43

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.

а) В каком отношении плоскость $ANM$ делит ребро $DD_1$?

б) Найдите площадь сечения призмы плоскостью $ANM$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через …

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, а боковые рёбра равны $12$. Точка $P$ — середина ребра $AA_1$, на ребре $DD_1$ отмечена точка $T$ так, что $DT:TD_1=1:5$.…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM =3{,}2$, $SK=3$. а) Докажит…

В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезк…