Задание 14 из ЕГЭ по математике (профиль): задача 43

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.

а) В каком отношении плоскость $ANM$ делит ребро $DD_1$?

б) Найдите площадь сечения призмы плоскостью $ANM$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через …

Боковое ребро правильной шестиугольной призмы проходит через вершину правильного октаэдра, а противоположное ему ребро призмы соединяет центры противоположных граней октаэдра. а) Д…

В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезк…

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.

а) Постройте сечение пирамиды плоск…