Задание 14 из ЕГЭ по математике (профиль): задача 3
В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через середину отрезка $MF$. б) Найдите угол между прямыми $MF$ и $AB$, если $ABCD$ — правильный тетраэдр.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.
а) Д…