Задание 14 из ЕГЭ по математике (профиль): задача 4

Разбор сложных заданий в тг-канале:

Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $L$ и $N$ соответственно.

а) Докажите, что $LN$ проходит через середину отрезка $SK$.

б) Найдите угол между плоскостью основания и плоскостью $ALN$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

Основание $ABCD$ правильной четырёхугольной пирамиды $SABCD$ вписано в нижнее основание цилиндра, а вершина $S$ расположена на оси $OO_1$ цилиндра ($O_1$ — центр верхнего основания цилиндра)…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В правильной треугольной пирамиде $DABC$ с основанием $ABC$ сторона основания равна $6√3$, а высота пирамиды равна $8$. На рёбрах $AB, AC$ и $AD$ соответственно отмечены точки $M, N$ и $K$, такие,…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!