Задание 14 из ЕГЭ по математике (профиль): задача 4
Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $L$ и $N$ соответственно.
а) Докажите, что $LN$ проходит через середину отрезка $SK$.
б) Найдите угол между плоскостью основания и плоскостью $ALN$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$.…
В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.
а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.
б) Найдите расстояние между прямыми $BD_1$ …
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…