Задание 14 из ЕГЭ по математике (профиль): задача 32

Разбор сложных заданий в тг-канале:

В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=8$, а боковое ребро $SD=10$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена плоскость $α$. Прямая $SC$ пересекает плоскость $α$ в точке $T$. а) Докажите, что $PT=TD$. б) Найдите объём пирамиды $PTCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…