Задание 14 из ЕГЭ по математике (профиль): задача 32
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=8$, а боковое ребро $SD=10$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена плоскость $α$. Прямая $SC$ пересекает плоскость $α$ в точке $T$. а) Докажите, что $PT=TD$. б) Найдите объём пирамиды $PTCD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.
а) Д…
В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезк…