Задание 14 из ЕГЭ по математике (профиль): задача 53

Разбор сложных заданий в тг-канале:

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Докажите, что прямые $PB$ и $PM$ перпендикулярны.

б) Найдите угол между плоскостями $PMB$ и $AA_1D$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=10$, а боковое ребро $SA=15$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM={40} / {7}$, $SK=6$. а) До…

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что…

Дана правильная треугольная пирамида SABC.

а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.

б) Найдите площ…

Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…