Задание 14 из ЕГЭ по математике (профиль): задача 66
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и содержит точки $K$ и $D$.
а) Докажите, что расстояние от точки $C$ до плоскости равно расстоянию от точки $B$ до плоскости $γ$.
б) Найдите объём пирамиды, вершина которой точка $C$, а основание сечение данной пирамиды плоскостью $γ$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная призма $ABCDA_1B_1C_1D_1, M$ и $N$ - середины рёбер $AB$ и $BC$ соответственно, точка $K$ - середина $MN$.
а) Докажите, что прямые $KD_1$ и $MN$ перпендикулярны.
б) Найдите угол ме…
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится сек…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 12, а высота $SO$ равна 9. Точка $K$ делит боковое ребро $SC$ в отношении $3:2$, считая от вершины $S$. Плоскость $ABK$ пере…