Задание 14 из ЕГЭ по математике (профиль): задача 61
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AA_1$ взята точка $M$ так, что $AM : MA_1 = 2 : 3$.
а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $M$ параллельно диагонали основания $AC$.
б) Найдите угол между плоскостью сечения и плоскостью основания, если $AA_1 = 5√6, AB = 4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
Дана правильная призма $ABCDA_1B_1C_1D_1, M$ и $N$ - середины рёбер $AB$ и $BC$ соответственно, точка $K$ - середина $MN$.
а) Докажите, что прямые $KD_1$ и $MN$ перпендикулярны.
б) Найдите угол ме…