Задание 14 из ЕГЭ по математике (профиль): задача 60

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CC_1$ взята точка $K$ так, что $CK : KC_1 = 1 : 2$.

а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $K$ параллельно диагонали основания $AC$.

б) Найдите угол между плоскостью сечения и плоскостью основания, если $CC_1 = 4.5√2, AB = 3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между …

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $7$, а плоский угол при вершине пирамиды равен $90°$.

а) Постройте сечение пирамиды плоскос…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=3√ 2$, $AB=3$, $AD=8$. Точка $K$ делит отрезок $A_1D_1$ в отношении $3:1$, считая от вершины $A_1$. а) Докажите, что п…