Задание 14 из ЕГЭ по математике (профиль): задача 59
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AD$ взята точка $F$ так, что $AF : FD = 1 : 3$.
а) Постройте сечение призмы плоскостью, проходящей через точки $B_1$ и $F$ параллельно диагонали $AC$.
б) Найдите угол между плоскостью сечения и плоскостью основания, если $BB_1 = 5√6, AB = 8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $6$, а боковые рёбра равны $8$. Точка $K$ — середина ребра $BB_1$, на ребре $AA_1$ отмечена точка $L$ так, что $AL:LA_1=1:7$.…
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 16$, высота $SO = 6$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 8$. Плоскость $γ$ параллельна прямой $BC$ и …