Задание 14 из ЕГЭ по математике (профиль): задача 59
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AD$ взята точка $F$ так, что $AF : FD = 1 : 3$.
а) Постройте сечение призмы плоскостью, проходящей через точки $B_1$ и $F$ параллельно диагонали $AC$.
б) Найдите угол между плоскостью сечения и плоскостью основания, если $BB_1 = 5√6, AB = 8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная треугольная пирамида SABC.
а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.
б) Найдите площ…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…