Задание 14 из ЕГЭ по математике (профиль): задача 63

Разбор сложных заданий в тг-канале:

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между прямыми $AB$ и $CD$, если $AB = 8√3, AD = 5√3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точки $P$ и $Q$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $3$. a) Докажите, что прямые $B_1P$ и $BQ$ перпендикулярны. б) Найдите расстояние между прям…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вер…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $12$, а боковое ребро $SA$ равно $17$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=SL=7$. Плоскост…