Задание 14 из ЕГЭ по математике (профиль): задача 63

Разбор сложных заданий в тг-канале:

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между прямыми $AB$ и $CD$, если $AB = 8√3, AD = 5√3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AD$ взята точка $F$ так, что $AF : FD = 1 : 3$.

а) Постройте сечение призмы плоскостью, проходящей через точки $B_1$ и $F$ пара…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вер…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=10$, а боковое ребро $SA=15$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM={40} / {7}$, $SK=6$. а) До…