Задание 14 из ЕГЭ по математике (профиль): задача 63

Разбор сложных заданий в тг-канале:

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между прямыми $AB$ и $CD$, если $AB = 8√3, AD = 5√3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной треугольной пирамиде $SABC$ сторона основания $AB=12$, а боковое ребро $SA=10$. На рёбрах $AB$ и $SC$ отмечены точки $K$ и $M$ соответственно, причём $AK:KB=SM:MC=1:5$, плоскость $α$ со…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вер…

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$.…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!