Задание 14 из ЕГЭ по математике (профиль): задача 48

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вершины $A_1$.

а) Постройте сечение этой призмы плоскостью, проходящей через точки $A, C$ и $K$.

б) Найдите площадь этого сечения.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между …

Дана правильная призма $ABCDA_1B_1C_1D_1, M$ и $N$ - середины рёбер $AB$ и $BC$ соответственно, точка $K$ - середина $MN$.

а) Докажите, что прямые $KD_1$ и $MN$ перпендикулярны.

б) Найдите угол ме…

Точки $P$ и $Q$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $3$. a) Докажите, что прямые $B_1P$ и $BQ$ перпендикулярны. б) Найдите расстояние между прям…