Задание 14 из ЕГЭ по математике (профиль): задача 49

Разбор сложных заданий в тг-канале:

Дана правильная треугольная пирамида SABC.

а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.

б) Найдите площадь этого сечения, если каждое ребро данной пирамиды равно 6 и AM : MS = 1 : 3.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 16$, высота $SO = 6$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 8$. Плоскость $γ$ параллельна прямой $BC$ и …