Задание 14 из ЕГЭ по математике (профиль): задача 50

Разбор сложных заданий в тг-канале:

Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD.

б) Найдите площадь этого сечения, если каждое ребро данной пирамиды равно 5.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, …

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…