Задание 14 из ЕГЭ по математике (профиль): задача 21
Дана правильная треугольная пирамида $SABC$, $AB=14$. Высота $SO$, проведённая к основанию, равна 18, точка $D$ — середина $AS$, точка $E$ — середина $BC$. Плоскость, проходящая через точку $D$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $F$ и $G$ соответственно. а) Докажите, что $FG$ проходит через середину отрезка $SE$. б) Найдите угол между плоскостью основания и плоскостью $AFG$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 1/3CD, CN = 1/3BC$, точка $L$ - середина $MN$.
а) Докажите, что прямые $A_1L$ …
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $6$, а боковые рёбра равны $8$. Точка $K$ — середина ребра $BB_1$, на ребре $AA_1$ отмечена точка $L$ так, что $AL:LA_1=1:7$.…