Задание 14 из ЕГЭ по математике (профиль): задача 21
Дана правильная треугольная пирамида $SABC$, $AB=14$. Высота $SO$, проведённая к основанию, равна 18, точка $D$ — середина $AS$, точка $E$ — середина $BC$. Плоскость, проходящая через точку $D$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $F$ и $G$ соответственно. а) Докажите, что $FG$ проходит через середину отрезка $SE$. б) Найдите угол между плоскостью основания и плоскостью $AFG$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AD$ взята точка $F$ так, что $AF : FD = 1 : 3$.
а) Постройте сечение призмы плоскостью, проходящей через точки $B_1$ и $F$ пара…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CC_1$ взята точка $K$ так, что $CK : KC_1 = 1 : 2$.
а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $K$ па…