Задание 14 из ЕГЭ по математике (профиль): задача 21

Разбор сложных заданий в тг-канале:

Дана правильная треугольная пирамида $SABC$, $AB=14$. Высота $SO$, проведённая к основанию, равна 18, точка $D$ — середина $AS$, точка $E$ — середина $BC$. Плоскость, проходящая через точку $D$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $F$ и $G$ соответственно. а) Докажите, что $FG$ проходит через середину отрезка $SE$. б) Найдите угол между плоскостью основания и плоскостью $AFG$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.

а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.

б) Найдите расстояние между прямыми $BD_1$ …

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и с…

Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…