Задание 14 из ЕГЭ по математике (профиль): задача 21
Дана правильная треугольная пирамида $SABC$, $AB=14$. Высота $SO$, проведённая к основанию, равна 18, точка $D$ — середина $AS$, точка $E$ — середина $BC$. Плоскость, проходящая через точку $D$ и параллельная основанию пирамиды, пересекает рёбра $SB$ и $SC$ в точках $F$ и $G$ соответственно. а) Докажите, что $FG$ проходит через середину отрезка $SE$. б) Найдите угол между плоскостью основания и плоскостью $AFG$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.
а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.
б) Найдите расстояние между прямыми $BD_1$ …
В правильной треугольной пирамиде $SABC$ сторона основания $AB=12$, а боковое ребро $SA=10$. На рёбрах $AB$ и $SC$ отмечены точки $K$ и $M$ соответственно, причём $AK:KB=SM:MC=1:5$, плоскость $α$ со…