Задание 14 из ЕГЭ по математике (профиль): задача 22

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 12, а высота $SO$ равна 9. Точка $K$ делит боковое ребро $SC$ в отношении $3:2$, считая от вершины $S$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точке $L$. а) Докажите, что площадь четырёхугольника $CKLD$ составляет ${16} / {25}$ площади треугольника $SCD$. б) Найдите объём пирамиды $ACKLD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.

а) Докажите, что ребро $BC$ делится сек…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $8$, а боковое ребро $SA$ равно $2√ {33}$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=2$, $SL:LB=1:6$.…

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…