Задание 14 из ЕГЭ по математике (профиль): задача 22
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 12, а высота $SO$ равна 9. Точка $K$ делит боковое ребро $SC$ в отношении $3:2$, считая от вершины $S$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точке $L$. а) Докажите, что площадь четырёхугольника $CKLD$ составляет ${16} / {25}$ площади треугольника $SCD$. б) Найдите объём пирамиды $ACKLD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=8$, а боковое ребро $SD=10$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…