Задание 14 из ЕГЭ по математике (профиль): задача 37
В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.
а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.
б) Найдите расстояние между прямыми $BD_1$ и $AC$, если известно, что боковое ребро призмы равно $24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится се…