Задание 14 из ЕГЭ по математике (профиль): задача 30

Разбор сложных заданий в тг-канале:

Точки $P$ и $Q$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $3$. a) Докажите, что прямые $B_1P$ и $BQ$ перпендикулярны. б) Найдите расстояние между прямыми $B_1P$ и $BQ$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$.…

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.

а) Постройте сечение пирамиды плоск…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $6$, а боковые рёбра равны $8$. Точка $K$ — середина ребра $BB_1$, на ребре $AA_1$ отмечена точка $L$ так, что $AL:LA_1=1:7$.…

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $7$, а плоский угол при вершине пирамиды равен $90°$.

а) Постройте сечение пирамиды плоскос…