Задание 14 из ЕГЭ по математике (профиль): задача 29
Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прямыми $B_1M$ и $BN$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.
а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…
В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, …
Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.
а) Постройте сечение пирамиды плоск…