Задание 14 из ЕГЭ по математике (профиль): задача 29
Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прямыми $B_1M$ и $BN$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $7$, а плоский угол при вершине пирамиды равен $90°$.
а) Постройте сечение пирамиды плоскос…
В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что прямаяAB перпендикулярна плоскости, п…
Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.
а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…