Задание 14 из ЕГЭ по математике (профиль): задача 29

Разбор сложных заданий в тг-канале:

Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прямыми $B_1M$ и $BN$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В основании пирамиды $DABC$ лежит правильный треугольник $ABC$ со стороной $5$. Ребро $CD$ перпендикулярно плоскости основания. Точки $K, L,$ и $M$ лежат на рёбрах $AD, BD$ и $AC$ соответственно. …

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $7$, а плоский угол при вершине пирамиды равен $90°$.

а) Постройте сечение пирамиды плоскос…

Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.

а) Постройте сечение пирамиды плоск…