Задание 14 из ЕГЭ по математике (профиль): задача 28

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, а боковые рёбра равны $12$. Точка $P$ — середина ребра $AA_1$, на ребре $DD_1$ отмечена точка $T$ так, что $DT:TD_1=1:5$. а) Докажите, что плоскость $CPT$ делит ребро $BB_1$ в отношении $1:2$. б) Найдите угол между плоскостями $ABC$ и $CPT$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.

а) Постройте сечение пирамиды плоск…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CD$ взята точка $K$ так, что $CK = DK$.

а) Постройте сечение призмы плоскостью, проходящей через точки $A_1$ и $K$ параллельно …