Задание 14 из ЕГЭ по математике (профиль): задача 27

Разбор сложных заданий в тг-канале:

Основание $ABCD$ правильной четырёхугольной пирамиды $SABCD$ вписано в нижнее основание цилиндра, а вершина $S$ расположена на оси $OO_1$ цилиндра ($O_1$ — центр верхнего основания цилиндра). Объём цилиндра равен $450π$, объём пирамиды равен $50$. а) Докажите, что $O_1S:SO=5:1$. б) Найдите расстояние между прямыми $AS$ и $CD$, если диаметр основания цилиндра равен $5√ 2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В треугольной пирамиде $MNPS$ точки $A$ и $B$ являются серединами рёбер $MN$ и $PS$, а точка $C$ — точка пересечения медиан грани $MNP$. а) Докажите, что прямая $SC$ проходит через середину отрезк…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…