Задание 14 из ЕГЭ по математике (профиль): задача 27
Основание $ABCD$ правильной четырёхугольной пирамиды $SABCD$ вписано в нижнее основание цилиндра, а вершина $S$ расположена на оси $OO_1$ цилиндра ($O_1$ — центр верхнего основания цилиндра). Объём цилиндра равен $450π$, объём пирамиды равен $50$. а) Докажите, что $O_1S:SO=5:1$. б) Найдите расстояние между прямыми $AS$ и $CD$, если диаметр основания цилиндра равен $5√ 2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На рёбрах $BS$ и $CS$ правильной четырёхугольной пирамиды $SABCD$ со стороной основания $AD = 10$ и боковым ребром $SA = 5√6$ взяты точки $K$ и $M$ соответственно так, что $SK : BK = CM : SM = 3 : 2$.…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и с…
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…