Задание 14 из ЕГЭ по математике (профиль): задача 5

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ пересекает боковое ребро $SD$ в точке $T$. а) Докажите, что прямая $LT$ пересекает отрезок $SM$ в его середине. б) Найдите расстояние от точки $L$ до плоскости $ABS$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM =3{,}2$, $SK=3$. а) Докажит…

В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, …

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…