Задание 14 из ЕГЭ по математике (профиль): задача 42
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится секущей плоскостью в отношении $2 : 1$, считая от вершины $C$.
б) Найдите угол между плоскостью сечения и плоскостью основания.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится се…
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что…