Задание 14 из ЕГЭ по математике (профиль): задача 42
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится секущей плоскостью в отношении $2 : 1$, считая от вершины $C$.
б) Найдите угол между плоскостью сечения и плоскостью основания.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …
Ребро куба $ABCDA_1B_1C_1D_1$ равно $10$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=3$. а) Докажите, что косинус угла ме…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CC_1$ взята точка $K$ так, что $CK : KC_1 = 1 : 2$.
а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $K$ па…