Задание 14 из ЕГЭ по математике (профиль): задача 41
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится секущей плоскостью в отношении $2 : 1$, считая от вершины $C$.
б) Найдите угол между плоскостью сечения и плоскостью основания.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 24, а высота $SO$ равна 16. Точка $K$ — середина бокового ребра $SC$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точк…