Задание 14 из ЕГЭ по математике (профиль): задача 41
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится секущей плоскостью в отношении $2 : 1$, считая от вершины $C$.
б) Найдите угол между плоскостью сечения и плоскостью основания.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $4$, боковые рёбра равны $6$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 1 : 2$.…
Ребро куба $ABCDA_1B_1C_1D_1$ равно $10$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=3$. а) Докажите, что косинус угла ме…
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…