Задание 14 из ЕГЭ по математике (профиль): задача 68

Разбор сложных заданий в тг-канале:

В правильной треугольной пирамиде $DABC$ с основанием $ABC$ сторона основания равна $6√3$, а высота пирамиды равна $8$. На рёбрах $AB, AC$ и $AD$ соответственно отмечены точки $M, N$ и $K$, такие, что $AM = AN = {3√3}/{2}$ и $AK = {5}/{2}$.

а) Докажите, что плоскости $MNK$ и $DBC$ параллельны.

б) Найдите расстояние от точки $K$ до плоскости $DBC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и с…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $8$, а боковое ребро $SA$ равно $2√ {33}$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=2$, $SL:LB=1:6$.…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=3√ 2$, $AB=3$, $AD=8$. Точка $K$ делит отрезок $A_1D_1$ в отношении $3:1$, считая от вершины $A_1$. а) Докажите, что п…