Задание 14 из ЕГЭ по математике (профиль): задача 67
В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания $AB$ равна $8√3$, а боковое ребро $AA_1 = 6$. На ребре $B_1C_1$ отмечена точка $L$ так, что $B_1L = 2√3$. Точки $K$ и $M$ - середины рёбер $AB$ и $A_1C_1$ соответственно. Плоскость $γ$ параллельна прямой $AC$ и содержит точки $K$ и $L$.
а) Докажите, что прямая $BM$ перпендикулярна плоскости $γ$.
б) Найдите объём пирамиды, вершина которой точка - $M$, а основание - сечение данной призмы плоскостью $γ$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.
а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=6$, а боковое ребро $SD=16$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…