Задание 14 из ЕГЭ по математике (профиль): задача 2
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. а) Докажите, что плоскость $AB_1C$ параллельна основаниям цилиндра; б) Найдите объём цилиндра, если ребро куба равно $3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=BC=6$, $ AA_1=12$, точки $M$ и $K$ — середины $AB$ и $BC$ соответственно, точка $N$ лежит на ребре $BB_1$, причём $BN=6$. Через точ…
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
На рёбрах $BS$ и $CS$ правильной четырёхугольной пирамиды $SABCD$ со стороной основания $AD = 10$ и боковым ребром $SA = 5√6$ взяты точки $K$ и $M$ соответственно так, что $SK : BK = CM : SM = 3 : 2$.…