Задание 14 из ЕГЭ по математике (профиль): задача 69

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $MNPQM_{1}N_{1}P_{1}Q_{1}$ сторона основания равна 11, а боковое ребро равно 15. На рёбрах $M_{1}Q_{1}, M_{1}N_{1}$ и $PQ$ взяты точки $X, Y , Z$, соответственно так, что $Q_{1}X = N_{1}Y = QZ = 5$.

а) Пусть $C$ - точка пересечения плоскости $XYZ$ с ребром $PN$. Докажите, что $XYZC$ - ] прямоугольник.

б) Найдите площадь сечения призмы плоскостью $XYZ$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между …

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, а боковые рёбра равны $12$. Точка $P$ — середина ребра $AA_1$, на ребре $DD_1$ отмечена точка $T$ так, что $DT:TD_1=1:5$.…

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что…