Задание 14 из ЕГЭ по математике (профиль): задача 70

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, что $A_{1}F = C_{1}K = CL = 3$.

а) Пусть $P$ точка пересечения плоскости $FKL$ с ребром $AB$. Докажите, что $FKLP$ прямоугольник.

б) Найдите площадь сечения призмы плоскостью $FKL$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основание $ABC$ правильной треугольной пирамиды $DABC$ вписано в основание конуса с вершиной $S$, а вершина $D$ пирамиды расположена на высоте $SO$ конуса. Объём конуса равен $36π$, объём пира…

Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 1/3CD, CN = 1/3BC$, точка $L$ - середина $MN$.

а) Докажите, что прямые $A_1L$ …

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CD$ взята точка $K$ так, что $CK = DK$.

а) Постройте сечение призмы плоскостью, проходящей через точки $A_1$ и $K$ параллельно …

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между …