Задание 14 из ЕГЭ по математике (профиль): задача 39
Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 1/3CD, CN = 1/3BC$, точка $L$ - середина $MN$.
а) Докажите, что прямые $A_1L$ и $MN$ перпендикулярны.
б) Найдите угол между плоскостями $MNA_1$ и $ABC$, если $AB = 6, AA_1 = 5√6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер $AA_1=√ {14}$, $AB=2$, $AD=6$. Точка $K$ делит отрезок $A_1D_1$ в отношении $2:1$, считая от вершины $A_1$. а) Докажите, что…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM =3{,}2$, $SK=3$. а) Докажит…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…