Задание 14 из ЕГЭ по математике (профиль): задача 38
В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 10$ и $BD = 24$.
а) Докажите, что прямые $B_1D_1$ и $AC_1$ перпендикулярны.
б) Найдите расстояние между прямыми $B_1D_1$ и $AC_1$, если известно, что боковое ребро призмы равно $20$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, …
Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прям…