Задание 14 из ЕГЭ по математике (профиль): задача 62
В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что прямаяAB перпендикулярна плоскости, проходящей через середину ребра AB и ребро DC.
б) Найдите расстояние между прямыми AB и CD, если AB = $6√3$, AD = $5√3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=AD=7$, $DD_1=9$, точки $M$, $N$ и $K$ лежат на рёбрах $AB$, $BB_1$ и $BC$ соответственно, причём $BM=BK=2$, $BN=3$. Через точку $D$ про…
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…