Задание 14 из ЕГЭ по математике (профиль): задача 62

Разбор сложных заданий в тг-канале:

В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что прямаяAB перпендикулярна плоскости, проходящей через середину ребра AB и ребро DC.

б) Найдите расстояние между прямыми AB и CD, если AB = $6√3$, AD = $5√3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рёбрах $BS$ и $CS$ правильной четырёхугольной пирамиды $SABCD$ со стороной основания $AD = 10$ и боковым ребром $SA = 5√6$ взяты точки $K$ и $M$ соответственно так, что $SK : BK = CM : SM = 3 : 2$.…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…

В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=8$, а боковое ребро $SD=10$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!