Задание 14 из ЕГЭ по математике (профиль): задача 62
В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что прямаяAB перпендикулярна плоскости, проходящей через середину ребра AB и ребро DC.
б) Найдите расстояние между прямыми AB и CD, если AB = $6√3$, AD = $5√3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $12$, а боковое ребро $SA$ равно $17$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=SL=7$. Плоскост…
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=6$, а боковое ребро $SD=16$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…
На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.
а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…