Задание 14 из ЕГЭ по математике (профиль): задача 58
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CD$ взята точка $K$ так, что $CK = DK$.
а) Постройте сечение призмы плоскостью, проходящей через точки $A_1$ и $K$ параллельно диагонали $BD$.
б) Найдите угол между плоскостью сечения и плоскостью основания, если $AA_1 = 3√3, AB = 6√2$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через …
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
В правильной четырёхугольной призме $MNPQM_{1}N_{1}P_{1}Q_{1}$ сторона основания равна 11, а боковое ребро равно 15. На рёбрах $M_{1}Q_{1}, M_{1}N_{1}$ и $PQ$ взяты точки $X, Y , Z$, соотв…