Задание 14 из ЕГЭ по математике (профиль): задача 31
В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$. a) Докажите, что $DF$ перпендикулярно $AC$. б) Найдите угол между прямой $DF$ и плоскостью $ABB_1$, если $AB=8$, $AC=12$ и $AA_1=6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=6$, а боковое ребро $SD=16$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM =3{,}2$, $SK=3$. а) Докажит…