Задание 14 из ЕГЭ по математике (профиль): задача 23
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 24, а высота $SO$ равна 16. Точка $K$ — середина бокового ребра $SC$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точке $L$. а) Докажите, что площадь четырёхугольника $CKLD$ составляет ${3} / {4}$ площади треугольника $SCD$. б) Найдите объём пирамиды $ACKLD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=AD=7$, $DD_1=9$, точки $M$, $N$ и $K$ лежат на рёбрах $AB$, $BB_1$ и $BC$ соответственно, причём $BM=BK=2$, $BN=3$. Через точку $D$ про…
Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 1/3CD, CN = 1/3BC$, точка $L$ - середина $MN$.
а) Докажите, что прямые $A_1L$ …