Задание 14 из ЕГЭ по математике (профиль): задача 23

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 24, а высота $SO$ равна 16. Точка $K$ — середина бокового ребра $SC$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точке $L$. а) Докажите, что площадь четырёхугольника $CKLD$ составляет ${3} / {4}$ площади треугольника $SCD$. б) Найдите объём пирамиды $ACKLD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания $AB = 4√2$, боковое ребро $AA_1 = 8$, $M$ середина ребра $A_1B_1$. На ребре $DD_1$ отмечена точка $L$ так, что $DL = 2$. Пл…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=BC=6$, $ AA_1=12$, точки $M$ и $K$ — середины $AB$ и $BC$ соответственно, точка $N$ лежит на ребре $BB_1$, причём $BN=6$. Через точ…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!