Задание 14 из ЕГЭ по математике (профиль): задача 24

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 48, а высота $SO$ равна 18. Точка $F$ — середина бокового ребра $SC$, точка $E$ — середина ребра $CD$. Плоскость $ABF$ пересекает боковое ребро $SD$ в точке $G$. а) Докажите, что прямая $FG$ пересекает отрезок $SE$ в его середине. б) Найдите расстояние от точки $F$ до плоскости $ABS$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильной треугольной пирамиде $SABC$ сторона основания $AB=12$, а боковое ребро $SA=10$. На рёбрах $AB$ и $SC$ отмечены точки $K$ и $M$ соответственно, причём $AK:KB=SM:MC=1:5$, плоскость $α$ со…

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…