Задание 14 из ЕГЭ по математике (профиль): задача 24

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 48, а высота $SO$ равна 18. Точка $F$ — середина бокового ребра $SC$, точка $E$ — середина ребра $CD$. Плоскость $ABF$ пересекает боковое ребро $SD$ в точке $G$. а) Докажите, что прямая $FG$ пересекает отрезок $SE$ в его середине. б) Найдите расстояние от точки $F$ до плоскости $ABS$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…

$SABCD$ — правильная четырёхугольная пирамида с основанием $ABCD$, боковое ребро которой равно ребру основания. Отрезок, соединяющий центр треугольника $SAB$ и центр основания пирамиды, …

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!