Задание 14 из ЕГЭ по математике (профиль): задача 47

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $9$, боковое ребро равно $14$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $2 : 7$, считая от вершины $A_1$.

а) Докажите, что сечение призмы плоскостью, проходящей через точки $A, C$ и $K$, является равнобедренной трапецией.

б) Найдите площадь этого сечения.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основание $ABC$ правильной треугольной пирамиды $DABC$ вписано в основание конуса с вершиной $S$, а вершина $D$ пирамиды расположена на высоте $SO$ конуса. Объём конуса равен $36π$, объём пира…

В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что $AB ⊥ CD$.

б) Найдите расстояние между …

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и с…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, а боковые рёбра равны $12$. Точка $P$ — середина ребра $AA_1$, на ребре $DD_1$ отмечена точка $T$ так, что $DT:TD_1=1:5$.…