Задание 14 из ЕГЭ по математике (профиль): задача 54

Разбор сложных заданий в тг-канале:

Дана правильная четырёхугольная пирамида $PABCD$ со стороной основания, равной $10$, и боковым ребром $5√{10}$. $ABCD$ - основание.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $BM$ параллельно диагонали $AC$, если точка $M$ - середина ребра $AP$.

б) Найдите величину угла между плоскостью сечения и плоскостью $PAC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основание $ABCD$ правильной четырёхугольной пирамиды $SABCD$ вписано в нижнее основание цилиндра, а вершина $S$ расположена на оси $OO_1$ цилиндра ($O_1$ — центр верхнего основания цилиндра)…

Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прям…

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, …