Задание 14 из ЕГЭ по математике (профиль): задача 54
Дана правильная четырёхугольная пирамида $PABCD$ со стороной основания, равной $10$, и боковым ребром $5√{10}$. $ABCD$ - основание.
а) Постройте сечение пирамиды плоскостью, проходящей через прямую $BM$ параллельно диагонали $AC$, если точка $M$ - середина ребра $AP$.
б) Найдите величину угла между плоскостью сечения и плоскостью $PAC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.
а) Постройте сечение тетраэдра плоскостью KLM.
б) Н…
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…
В правильной шестиугольной пирамиде $SABCDEF$ сторона основания $AB=6$, а боковое ребро $SD=16$. Точка $P$ — середина ребра $AB$. Через точки $P$ и $D$ перпендикулярно плоскости $ABC$ проведена пл…