Задание 14 из ЕГЭ по математике (профиль): задача 8

Разбор сложных заданий в тг-канале:

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$. a) Докажите, что $DF$ перпендикулярно $AC$. б) Найдите угол между прямой $DF$ и плоскостью $ABB_1$, если $AB=12$, $AC=8$ и $AA_1=10$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через …

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SB$ отмечены точки $M$ и $K$ соответственно, причём $AM =3{,}2$, $SK=3$. а) Докажит…

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 24, а высота $SO$ равна 16. Точка $K$ — середина бокового ребра $SC$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точк…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!