Зарегистрироваться Войти через вк

Задание 14 из ЕГЭ по математике (профильной)

Тема: «Стереометрия (часть С)»

За это задание вы можете получить 2 балла на ЕГЭ в 2020 году
Задача 1

а) Ребро куба $ABCDA_1B_1C_1D_1$ равно $1$. Докажите, что в треугольнике $AB_1C$ радиус вписанной окружности равен ${√6}/{6}$.

б) Рассмотрим три биссектрисы плоских углов, выходящих из точ…

Задача 2

а) У трёхгранного угла каждый из плоских углов равен $90°$. Докажите, что углы между любой парой биссектрис этих плоских углов равны по $60°$.

б) У трёхгранного угла из пункта а) рассм…

Задача 3

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.

а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.

б) Найдите расстояние между прямыми $BD_1$ …

Задача 4

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 10$ и $BD = 24$.

а) Докажите, что прямые $B_1D_1$ и $AC_1$ перпендикулярны.

б) Найдите расстояние между прямы…

Задача 5

Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 13CD, CN = 13BC$, точка $L$ - середина $MN$.

а) Докажите, что прямые $A_1L$ и …

Задача 6

Дана правильная призма $ABCDA_1B_1C_1D_1, M$ и $N$ - середины рёбер $AB$ и $BC$ соответственно, точка $K$ - середина $MN$.

а) Докажите, что прямые $KD_1$ и $MN$ перпендикулярны.

б) Найдите угол ме…

Задача 7

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.

а) Докажите, что ребро $BC$ делится се…

Задача 8

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.

а) Докажите, что ребро $BC$ делится сек…

Задача 9

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…

Задача 10

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $4$, боковые рёбра равны $6$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 1 : 2$.…

Задача 11

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Задача 12

В основании пирамиды $DABC$ лежит правильный треугольник $ABC$ со стороной $5$. Ребро $CD$ перпендикулярно плоскости основания. Точки $K, L,$ и $M$ лежат на рёбрах $AD, BD$ и $AC$ соответственно. …

Задача 13

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $9$, боковое ребро равно $14$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $2 : 7$, считая от ве…

Задача 14

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вер…

Задача 15

Дана правильная треугольная пирамида SABC.

а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.

б) Найдите площ…

Задача 16

Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…

Задача 17

На рёбрах $BS$ и $CS$ правильной четырёхугольной пирамиды $SABCD$ со стороной основания $AD = 10$ и боковым ребром $SA = 5√6$ взяты точки $K$ и $M$ соответственно так, что $SK : BK = CM : SM = 3 : 2$.…

Задача 18

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…

Задача 19

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

Задача 20

Основанием прямой призмы $ABCDA_1B_1C_1D_1$ является ромб с тупым углом $B$, равным $120°$. Все рёбра этой призмы равны $10$. Точки $P$ и $K$ - середины рёбер $CC_1$ и $CD$ соответственно.

а) Дока…

1 2 3 4 5

Наибольшее и наименьшее значение функций исследует задание 14 ЕГЭ по математике. Оно может содержать в себе вопросы по шести разным темам школьной программы. Для решения задания понадобится черновик – использование его предусмотрено в правилах проведения этого экзамена. Готовый ответ после записывается в бланке работы.

В теме «Исследование степенных и иррациональных функций» вас попросят найти максимум или минимум функции. При этом вопрос может звучать как «найти наименьшее значение функции» и «найти точку минимума функции» - пусть это не вводит вас в заблуждение, составители тестов имеют в этом случае в виду одно и то же. Иногда в задании уточняется интервал, на котором находится искомая величина: «Найдите наименьшее значение функции на отрезке [−3;4]», иногда интервал значений не указывается.

Темы задания № 14 ЕГЭ по математике «Исследование частных», «Исследование произведений», «Исследование показательных и логарифмических функций», «Исследование тригонометрических функций», «Исследование функций без помощи производной» содержат в себе вопросы такого же типа. Экзаменуемые должны будут найти максимальное значение функции или ее минимум, на заданном интервале значений или «вообще».

Задание 14 ЕГЭ по математике невозможно решить правильно без предварительного усвоения материала не только по алгебре, но и по математике, преподаваемой в средних классах. Подготовиться к экзамену вам поможет учитель или репетитор, а если вы предпочитаете работать самостоятельно, вам пригодятся учебники математики и алгебры любого автора. Главное условие – эти учебники должны быть рекомендованы к использованию в российских школах Министерством Образования. Именно в такой учебной литературе построение вопросов будет совпадать с тем, что применили составители тестов ЕГЭ по математике при подготовке задания № 14.