Задание 24 из ОГЭ по математике
Основания $BC$ и $AD$ трапеции $ABCD$ равны $8$ и $18$, а $BD = 12$. Докажите, что треугольники $BCD$ и $ABD$ подобны
Основания $BC$ и $AD$ трапеции $ABCD$ равны $3$ и $27$, а $BD = 9$. Докажите, что треугольники $BCD$ и $ABD$ подобны.
В остроугольном треугольнике $BCD$ проведены высоты $CC_1$ и $DD_1$. Докажите, что углы $CDD_1$ и $CC_1D_1$ равны.
В остроугольном треугольнике $BCD$ проведены высоты $BB_1$ и $CC_1$. Докажите, что углы $CBB_1$ и $CC_1B_1$ равны.
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $LHM$ и $KHN$ равна половине площади трапеции.
В выпуклом четырёхугольнике $ACDE$ углы $EAD$ и $ECD$ равны. Докажите, что углы $ACE$ и $ADE$ также равны
В выпуклом четырёхугольнике $ACDE$ углы $ACE$ и $ADE$ равны. Докажите, что углы $CAD$ и $CED$ также равны.
В параллелограмме $CDFG$ с тупым углом $D$ проведены перпендикуляры $CH$ и $FA$ к диагонали $DG$. Докажите, что $ACHF$ — параллелограмм
В параллелограмме $KLMN$ с острым углом $K$ проведены перпендикуляры $LC$ и $NB$ к диагонали $KM$. Докажите, что $LBNC$ — параллелограмм.
В треугольнике $ABC$ на его медиане $BM$ отмечена точка $L$ так, что площадь треугольника $ABL$ в $9$ раз меньше площади треугольника $ABC$. Докажите, что $BL : LM = 2 : 7$.
В треугольнике $ABC$ на его медиане $AL$ отмечена точка $D$ так, что площадь треугольника $BDL$ в $2,5$ раза меньше площади треугольника $ABC$. Докажите, что $AD : DL = 1 : 4$.
В окружности через середину $C$ хорды $AB$ проведена хорда $DF$ так, что дуги $AD$ и $BF$ равны. Докажите, что $C$ — середина хорды $DF$.
В окружности через середину $F$ хорды $AC$ проведена хорда $BD$ так, что дуги $AD$ и $BC$ равны. Докажите, что $F$ — середина хорды $BD$.
Внутри параллелограмма $CDEF$ выбрали произвольную точку $P$. Докажите, что сумма площадей треугольников $DEP$ и $CPF$ равна половине площади параллелограмма.
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.
Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…
Известно, что около четырёхугольника $CDEF$ можно описать окружность и что продолжения сторон $EF$ и $DC$ четырёхугольника пересекаются в точке $B$. Докажите, что треугольники $BDE$ и $BCF$ по…
В параллелограмме MNPQ сторона MN в два раза меньше стороны NP. Точка Z – середина стороны MQ. Докажите, что NZ – биссектриса.
В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.