Задание 24 из ОГЭ по математике: задача 6
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $LHM$ и $KHN$ равна половине площади трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.
Внутри параллелограмма $ABCD$ выбрали произвольную точку $O$. Докажите, что сумма площадей треугольников $BCO$ и $ADO$ равна половине площади параллелограмма.
Четырёхугольник $ABCD$ вписан в окружность. Продолжения его сторон $AB$ и $DC$ пересекаются в точке $M$. Докажите, что треугольники $AMC$ и $BMD$ подобны.