Задание 24 из ОГЭ по математике: задача 41
В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно равны $17$, $15$ и $8$. Найдите площадь параллелограмма $DEFG$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диам…
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
В остроугольном треугольнике $BCD$ проведены высоты $BB_1$ и $CC_1$. Докажите, что углы $CBB_1$ и $CC_1B_1$ равны.