Задание 24 из ОГЭ по математике: задача 41

Разбор сложных заданий в тг-канале:

В параллелограмме $DEFG$ проведена диагональ $DF$. Точка $O$ является центром окружности, вписанной в треугольник $DEF$. Расстояния от точки $O$ до точки $D$ и прямых $DG$ и $DF$ соответственно равны $17$, $15$ и $8$. Найдите площадь параллелограмма $DEFG$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме $MNPQ$ сторона $MN$ вдвое больше стороны $MQ$. Точка $A$ — середина стороны $MN$. Докажите, что $PA$ — биссектриса угла $QPN$.

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…

На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!