Задание 24 из ОГЭ по математике: задача 4
В остроугольном треугольнике $BCD$ проведены высоты $BB_1$ и $CC_1$. Докажите, что углы $CBB_1$ и $CC_1B_1$ равны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции
В остроугольном треугольнике $MNP$ проведены высоты $MM_1$ и $NN_1$, которые пересекаются в точке $K$. Докажите, что
$∠ MM_1N_1=∠ MNN_1$.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…