Задание 24 из ОГЭ по математике: задача 51

Разбор сложных заданий в тг-канале:

Точка $M$ является произвольной внутренней точкой параллелограмма $ABCD$. Докажите, что сумма площадей треугольников $ABM$ и $CMD$ равна половине площади параллелограмма $ABCD$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Около четырёхугольника $MNPQ$ описана окружность, а продолжения сторон $NP$ и $MQ$ пересекаются в точке $A$. Докажите, что треугольники $ANM$ и $APQ$ подобны.

$PH$ и $QH_1$ являются высотами остроугольного треугольника MPQ. Докажите, что углы $HH_1P$ и $H_1PQ$ равны.

В параллелограмме $CDFG$ с тупым углом $D$ проведены перпендикуляры $CH$ и $FA$ к диагонали $DG$. Докажите, что $ACHF$ — параллелограмм

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!