Задание 24 из ОГЭ по математике: задача 22
$PH$ и $QH_1$ являются высотами остроугольного треугольника MPQ. Докажите, что углы $HH_1P$ и $H_1PQ$ равны.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В параллелограмме $MNPQ$ сторона $MN$ вдвое больше стороны $MQ$. Точка $A$ — середина стороны $MN$. Докажите, что $PA$ — биссектриса угла $QPN$.
Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.
На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции