Задание 24 из ОГЭ по математике: задача 20

Разбор сложных заданий в тг-канале:

В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что около четырёхугольника $LMTP$ можно описать окружность и что продолжения сторон $PT$ и $ML$ четырёхугольника пересекаются в точке $K$. Докажите, что треугольники $KMT$ и $KLP$ по…

В треугольнике $ABC$ на его медиане $AL$ отмечена точка $D$ так, что площадь треугольника $BDL$ в $2,5$ раза меньше площади треугольника $ABC$. Докажите, что $AD : DL = 1 : 4$.

На средней линии трапеции $KLMN$ с основаниями $KN$ и $LM$ выбрали произвольную точку $H$. Докажите, что сумма площадей треугольников $KLH$ и $MHN$ равна половине площади трапеции

Около четырёхугольника $MNPQ$ описана окружность. Лучи $MN$ и $QP$ пересекаются в точке $E$. Докажите, что треугольники $ENP$ и $EQM$ подобны.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!